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Abstract

We study the Doi model for suspensions of rod-like molecules. The Doi model couples a microscopic Fokker–Planck
type equation (Smoluchowski equation) to the macroscopic Stokes equation. The Smoluchowski equation describes the
evolution of the distribution of the rod orientations; it comes as a drift–diffusion equation on the sphere at every point
in physical space.

For sufficiently high macroscopic shear rates (high Deborah numbers), the solution of the coupled system develops
internal layers in the macroscopic strain rate (the spurt phenomenon).

In the high Deborah numbers regime, the drift term in the Smoluchowski equation is dominant. We thus introduce a
finite-volume type discretization of the microscopic Smoluchowski equation which is motivated by transport-dominated
PDEs.

We carry out direct numerical simulations of the spurt phenomenon both in the dilute and concentrated regimes. Below
the isotropic–nematic transition, the solution structure is identical to the one described by purely macroscopic models (JSO
model). For higher concentrations, we observe the formation of microstructure coming from a position-dependent tum-
bling rate. We also investigate the 2-d stability of the spurted solution.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many fluids are viscoelastic materials in the sense that the stress exposed to a macroscopic fluid element
depends on the history of the deformation experienced by that element. The rheological properties of visco-
elastic liquids are governed by the flow-induced evolution of molecular configurations. Thus a detailed math-
ematical model of viscoelastic flow problems requires a description of microscopic (or mesoscopic) molecular
orientations and macroscopic rheological response.

In this paper, the macroscopic flow is described by the Stokes equations, which model a creeping flow where
inertial effects are negligible (zero Reynolds number limit of the Navier–Stokes equation). Our microscopic
model is a kinetic equation for the orientation of rigid rods which are assumed to have the same length. This
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results in the so-called Smoluchowski equation, a Fokker–Planck equation on the sphere. The macroscopic
flow model is coupled to the microscopic description of rod orientations via an elastic stress (arising as an
additional term in the Stokes equations). The drift term in the microscopic Smoluchowski equation depends
on the macroscopic velocity gradient of the flow. Besides the interaction with the flow, in the concentrated
regime an interaction between molecules is modeled. Furthermore, the rods are subject to Brownian forces.
A mathematical description of the models considered in this paper is given in Section 2. These models were
derived by Doi and Edwards [4]. Note that by using a coupled micro–macro model we avoid possible inaccu-
racies due to closure approximations.

Here, we are interested in the development of appropriate numerical methods. This is quite challenging due
to the high dimensionality of the problem. The coupled problem is a pde in 5 dimensions plus time: the
distribution of rod orientations is monitored in every point of physical space. In the calculations shown in this
paper, we restrict our considerations to geometries with spatial symmetries where the physical space is effec-
tively 2-dimensional, this leads to a pde in 4 dimensions. The coupled problem shows interesting phenomena,
in particular the spurt phenomenon. Spurt describes a sudden increase of the volumetric flow rate at a critical
stress which has also been observed experimentally, see for instance Vinogradov et al. [31]. In [18], this was
connected with the occurrence of internal layers, across which the shear rate is nearly discontinuous. For
our model spurt can be observed in the high Deborah number regime, this was recently analyzed in [24]. In
order to observe a correct prediction of the spurt phenomenon in numerical simulations, we develop a numer-
ical method that leads to accurate results in the high Deborah number regime. We are not aware of other
numerical simulations where a spurt solution was approximated for a coupled micro–macro model of visco-
elastic fluids.

During the last decades, most of the numerical methods for viscoelastic fluids were developed for purely
macroscopic models. In those models, the momentum and continuity equations are equivalent to our model
but the elastic stress is modeled by a constitutive equation, see for instance Joseph [6] for a large variety of
models. The macroscopic Johnson–Segalman–Oldroyed (JSO) model also predicts the spurt phenomenon.
In a series of papers Malkus, Nohel, Pego, Plohr and Tzavaras have studied this model both analytically
and numerically, see [18–20,22,23]. We found that in the dilute regime the steady-state solution structure
for shear flow, obtained by our micro–macro model, agrees with the solution structure predicted by the
JSO model, this will be discussed in some more detail in Section 4. Furthermore, we show numerical calcula-
tions for the multiscale shear flow problem in the concentrated regime. In this case, we also observe the spurt
phenomenon. However, the spurt solutions in the concentrated regime develop a fine scale substructure, see
Section 5.

In a recent review paper, Keunings [9] gives an overview about the current state of the art of micro–macro
models for viscoelastic fluids and their numerical treatment. Most kinetic models for polymer solutions are
based on dumbbell models. The CONNFFESSIT method introduced by Laso and Öttinger [12] has had a sig-
nificant impact on the development of micro–macro techniques. This approach uses Monte-Carlo methods for
the approximation of an equivalent stochastic differential equation of the kinetic model. Jourdain et al. [8]
show that in a simple shear flow situation their numerical micro–macro model (a finite element method cou-
pled to a Monte-Carlo method) converges to the exact solution. In their work, a dumbbell model was used to
describe the microscopic behavior. Control of variance is the major issue in stochastic micro–macro simula-
tions, see Jourdain et al. [7]. This problem does not arise in direct numerical simulations of the Fokker–Planck
equation. However, simulations of the Fokker–Planck equation seem to be feasible only for microscopic mod-
els with relatively few configurational degrees of freedom. So far most of the Fokker–Planck simulations have
been performed for models of rod-like polymers. Typically, the numerical approximation of the distribution
function of rod orientations is based on a Galerkin Ansatz using spherical harmonics. Since spherical harmon-
ics are the eigenfunctions of the Laplace operator on the sphere, this choice of basis functions is expected to be
optimal in the diffusion-dominated case of small deformation rates, i.e. in the small Deborah number regime.
Detailed numerical simulations of the uncoupled Smoluchowski equation have lead to a good understanding
of the complex dynamic behavior of rod-like polymers under shear flow, see Marrucci and Maffettone [21],
Larson [10], Larson and Öttinger [11], Fafaoni et al. [5]. We will present some test calculations in Section
3.6. However, in order to simulate the spurt phenomenon we need a numerical method that is accurate
in the advection-dominated regime of large Deborah number. For this, we use a variant of LeVeque’s wave
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propagation algorithm [15]. We have developed a method for advective transport (with spatially varying
velocity field) on the sphere that is a generalization of the recently suggested f-wave approach [2] for hyper-
bolic problems with spatially varying flux function, see Section 3.

The proposed algorithm for the microscopic solution structure, describing the rod orientation on the
sphere, has been implemented as an extension of the CLAWPACK (Conservation LAW PACKage) software
by LeVeque [13] which is freely available on the web. We have extended the software to the case of advection–
diffusion problems on the sphere. This should be of use also for several other applications. The source code
developed for the Smoluchowski equation can be obtained via the web at http://www.iam.uni-bonn.de/~hel-
zel/smoluchowski.

2. The mathematical multiscale model

We consider liquid crystal molecules that assume a rigid rod-like structure. Let L be the constant length of
the rod-like molecules and b their thickness. We consider slender rods, i.e. we assume b� L. Furthermore, let
m denote the constant number density of the rod-like molecules. Following Doi and Edwards [4], we distin-
guish three regimes:

Dilute regime. The rods are well separated, as expressed by m� L�3, i.e. the averaged distance between
polymers is much larger than L.

Concentrated regime. The excluded volume effects reduce the entropy substantially. The theory by Onsager
shows that this happens for m J b�1L�2. Polymers tend to orient in the same direction as their neighbors. For
a critical value of the dimensionless number mbL2, this leads to isotropic nematic phase transition.

Semi-dilute regime. On one hand, there is the kinetic effect that rods hinder themselves in their rotational
movement. On the other hand, there is not yet an entropic effect: L�3� m� b�1L�2.

For all three regimes Doi and Edwards [4] introduced kinetic models. See also [24] for a derivation of the
equations in the form used here.

The microscopic system is described by a local probability distribution wðt;~x;~nÞd~n. It gives the time-
dependent probability that a rod with center of mass at~x has an axis in the area element d~n. The relations
w P 0 and

Z
S2

wd~n ¼ 1 ð1Þ
hold for all times.
In the dilute regime, the evolution of w is given by the Smoluchowski equation
otwðt;~x;~nÞ þ~uðt;~xÞ � r~xwðt;~x;~nÞ þ r~n � ðP~n?r~x~uðt;~xÞ~nwðt;~x;~nÞÞ ¼ Drr2
~nwðt;~x;~nÞ. ð2Þ
Here the second term describes advection of the centers of mass by the macroscopic velocity~u, the third term
describes the rotation of the axis due to a velocity gradient r~x~u and the term on the right-hand side models
rotational diffusion due to Brownian motion. Here P~n?r~x~u~n :¼ r~x~u~n� ð~n � r~x~u~nÞ~n denotes the projection of
the vector r~x~u~n on the tangent space in~n. Gradient, divergence and Laplacian on the unit sphere are denoted
by r~n, r~n� and r2

~n, while gradient and divergence in physical space are denoted by r~x and r~x�.
A velocity gradient r~x~u distorts an isotropic distribution w which leads to an increase in entropy. Thermo-

dynamic consistency [4, Section 8.6] requires that this is balanced by a stress tensor rðt;~xÞ given by
rðt;~xÞ :¼
Z

S2

ð3~n�~n� idÞwðt;~x;~nÞd~n. ð3Þ
Here, r plays the role of an elastic stress arising as additional term in the Stokes equation that models the
macroscopic flow. The averaged momentum and continuity equations take the form
r~x � r~x~uðt;~xÞ þ rt
~x~uðt;~xÞ

� �
� pðt;~xÞidþ rðt;~xÞ

� �
¼ �~F extðt;~xÞ; ð4Þ

r~x �~uðt;~xÞ ¼ 0; ð5Þ
where~u is the macroscopic velocity, p the pressure and ~F ext is an externally imposed volume force. Note that
the time evolution of the flow is governed entirely by the time dependence of the forces ~F ext and the time
dependence of the elastic stress r.

http://www.iam.uni-bonn.de/~helzel/smoluchowski
http://www.iam.uni-bonn.de/~helzel/smoluchowski
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In the semi-dilute regime, rotational motion of a rod is hindered by the presence of the other rods. Within a
mean field framework, a rod with axis ~n and center of mass ~x feels a rotational diffusivity Drðt;~x;~nÞ which
depends on wðt;~x;~n0Þd~n0. Modeling based on a tube concept [4, Section 9.2] leads to the expression
Drðt;~x;~nÞ :¼ Dr;dil

4

p

Z
S2

j~n�~n0jwðt;~x;~n0Þd~n0
� ��2

; ð6Þ
where Dr,dil is the rotational diffusivity in a hypothetical isotropic solution of molecules at the given concen-
tration. With this model, motion perpendicular to the polymer is severely limited by surrounding polymers.

Instead of (6) an averaged quantity
�Drðt;~xÞ :¼ Dr;dil

4

p

Z
S2

Z
S2

j~n�~n0jwðt;~x;~nÞwðt;~x;~n0Þd~nd~n0
� ��2

ð7Þ
may be used. Although the averaging removes the dependence on ~n, a dependence on the average degree of
molecular orientation is retained. The higher the degree of orientation, the less the molecules hinder each
others rotational motion and the larger �Drðt;~xÞ becomes. The elastic stress is again calculated by Eq. (3)
and the same momentum and continuity equations (4) and (5) are used to update the macroscopic flow field.

In the concentrated regime excluded volume effects occur. The presence of a rod with axis ~n reduces the
phase space volume for rods with axis ~n0. The Smoluchowski equation which now models the evolution of
the distribution function in the presence of flow and excluded volume effects has the form
otwþ~u � r~xwþr~n � ðP~n?r~x~u~nwÞ ¼ Dr r2
~nwþr~n � ðwr~nV evÞ

� �
. ð8Þ
Here Dr is the orientation-independent rotational diffusion constant, and Vev is an excluded volume potential.
We will use the Maier–Saupe excluded volume potential:
V evð~nÞ :¼ U
Z

S2

j~n�~n0j2wð~n0Þd~n0; ð9Þ
with the dimensionless parameter U :¼ 2mbL2. The elastic stress tensor takes the form:
rð~x; tÞ :¼
Z

S2

ðð3~n�~n� idÞwþ ðr~nV ev �~nÞwÞd~n. ð10Þ
To gain understanding of the microscopic solution structure, we will study solutions of the Smoluchowski
equation for an externally given velocity field r~x~uext. The number De :¼ jr~x~uextj=Dr which relates the exter-
nally exposed time scale to the time scale related to rotational diffusion is called the Deborah number.

3. A numerical method for the Smoluchowski equation

In this section, we describe our numerical method for the discretization of the Smoluchowski equation on
the sphere, i.e. both on S1 and S2, at a fixed point in physical space assuming that a constant externally
imposed velocity gradient r~x~uext is given. We first consider the dilute regime, i.e. we want to approximate
otwþr~n � ðP~n?r~x~uext~nwÞ � Drr2
~nw ¼ 0 ð11Þ
with given initial values wðt0;~nÞ that satisfy
R

S2 wðt0;~nÞd~n ¼ 1. Here, we propose an algorithm that fits well into
the multidimensional wave propagation concept of the CLAWPACK software. Our discretization is based on a
formulation of the Smoluchowski equation in spherical coordinates.

3.1. The Smoluchowski equation in spherical coordinates

We are mostly interested in an externally imposed velocity gradient which comes from a shear flow:
rx~uext ¼
u11 u12 u13

u21 u22 u23

u31 u32 u33

0
B@

1
CA ¼

0 1 0

0 0 0

0 0 0

0
B@

1
CA.
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Here, we have chosen the Cartesian coordinates such that
(

first component ¼^ flow direction

second component ¼^ shear direction

third component ¼^ vorticity direction.
Our numerical method will be based on spherical coordinates. It is convenient to put the poles into the vor-
ticity direction: In this case, the drift velocity
~b ¼ P~n?r~x~uext~n
vanishes at the poles.
To be more specific, we write
~n ¼
cos / sin h

sin / sin h

� cos h

0
B@

1
CA; ~e/ ¼

1

sin h
o~n
o/
¼

� sin /

cos /

0

0
B@

1
CA; ~eh ¼

o~n
oh
¼

cos / cos h

sin / cos h

sin h

0
B@

1
CA.
with / 2 [0, 2p] and h 2 [0,p]. Notice that f~n;~e/;~ehg is an orthonormal basis of R3 and thus f~e/;~ehg an ortho-
normal basis of the tangent space of S2 at ~n. We decompose the drift velocity accordingly
~b ¼ b/~e/ þ bh~eh with b/ ¼~b �~e/; bh ¼~b �~eh; ð12Þ

and notice that for a function on S2
r~nf ¼
1

sin h
o/f~e/ þ ohf~eh. ð13Þ
Finally, we recall that the area element d~n on S2 transforms according to
d~n ¼ o~n
o/
� o~n

oh

����
����d/dh ¼ sin hj~e/ �~ehjd/dh ¼ sin hd/dh. ð14Þ
This information is used to derive the Smoluchowski equation in spherical coordinates, passing via the weak
formulation:
0 ¼
Z

S2

ðotwþr~n � ðbwÞ � Drr2
~nwÞfd~n

¼
Z

S2

ðfotw� wb � r~nfþ Drr~nw � r~nfÞd~n

¼12)–(14)
Z p

0

Z 2p

0

fotw� w
1

sin h
b/o/fþ bhohf

� �
þ Dr

1

sin2 h
o/wo/fþ ohwohf

� �� �
sin hd/dh

¼
Z p

0

Z 2p

0

sin hotwþ o/ðb/wÞ þ ohðsin hbhwÞ � Dr o/
1

sin h
o/w

� �
þ ohðsin hohwÞ

� �� �
fd/dh.
Hence, we obtain
sin hotwþ o/ðb/wÞ þ ohðsin hbhwÞ � Dr o/
1

sin h
o/w

� �
þ ohðsin hohwÞ

� �
¼ 0.
3.2. The fractional step method

For the numerical approximation of (11) on the unit sphere S2 we use a longitude–latitude grid. For sim-
plicity, we assume an equally spaced computational grid in the / and the h-direction with D/ ¼
/iþ1

2
� /i�1

2
; i ¼ 1; . . . ;M and Dh ¼ hjþ1

2
� hj�1

2
; j ¼ 1; . . . ;N . Let the externally imposed velocity gradient be

denoted by r~x~uext ¼ ðuijÞi;j¼1;2;3. We can now rewrite (11) into the conservative form
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jð/; hÞotwðt;/; hÞ þ o/ðað/; hÞwðt;/; hÞÞ þ ohðbð/; hÞwðt;/; hÞÞ ¼ ðLwÞðt;/; hÞ ð15Þ

with
jð/; hÞ :¼ sin h; ð16Þ

Lw :¼ Dr o/
1

sin h
o/w

� �
þ ohðsin hohwÞ

� �
; ð17Þ

að/; hÞ :¼ �u11 sin / cos / sin h� u12 sin2 / sin hþ u13 cos h sin /

þ u21 cos2 / sin hþ u22 sin / cos / sin h� u23 cos h cos /;

bð/; hÞ :¼ u11 cos2 / sin2 h cos hþ u12 sin / cos / sin2 h cos h� u13 cos2 h cos / sin h

þ u21 cos / sin2 h sin / cos hþ u22 sin2 / sin2 h cos h� u23 sin / cos2 h sin h

þ u31 sin3 h cos /þ u32 sin / sin3 h� u33 cos h sin2 h. ð18Þ
To obtain an approximation of (15), we use an operator splitting method, in which we alternate between solv-
ing the pure transport problem
jð/; hÞotwþ o/ðað/; hÞwÞ þ ohðbð/; hÞwÞ ¼ 0 ð19Þ

and the heat equation
jð/; hÞotw ¼Lw. ð20Þ

Subproblem (19) will be solved by a high-resolution finite volume method and subproblem (20) will be solved
by a second-order accurate finite difference method.

A second-order accurate operator splitting method is the Strang-splitting [29] which has the form
Wnþ1 ¼ LDt=2
heat LDt

transL
Dt=2
heat W

n; ð21Þ

i.e. the numerical solution of the Smoluchowski equation at time tn+1 is calculated from the numerical solution
at time tn by first applying the solution operator for the heat equation on the sphere over a half time step,
followed by one time step of the finite volume method for advective transport, and another half time step
of the heat equation solver. By using accurate methods for both subproblems, we will obtain a method for
the full problem that is accurate for a large range of parameter values, in particular the large Deborah number
regime.

3.3. A finite volume method for advective transport

On the one-dimensional unit sphere the Smoluchowski equation in the dilute regime with externally given
velocity gradient r~x~uext ¼ ðuijÞi;j¼1;2 takes the form
otwþ o/ðwð�u11 sin / cos /� u12 sin2 /þ u21 cos2 /þ u22 sin / cos /ÞÞ ¼ Dro
2
/w ð22Þ
with W :¼ W(t,/) and / 2 [0,2p). We thus want to construct a finite volume method for a scalar transport
equation of the form
otwðt;/Þ þ o/ að/Þwðt;/Þð Þ ¼ 0 ð23Þ

with a given function a : ½0; 2p� ! R and given initial values for w.

The construction of finite volume methods for conservation laws with spatially varying flux functions was
studied in Bale et al. [2]. There a suitable decomposition of the flux differences at cell interfaces, the so-called
f-wave approach, was introduced. However, in [2] it was assumed that the spatially varying velocity field does
not change sign. For our application this assumption is not satisfied and we will therefore develop an f-wave
approach that can be used in the more general situation.

A finite volume method for (23) has the general form
Wnþ1
i ¼ Wn

i �
Dt
D/

F iþ1
2
� F i�1

2

	 

; ð24Þ
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where Wn
i is an approximation to the cell average of the conserved quantity w in grid cell i (i.e. ½/i�1

2
;/iþ1

2
�) at

time tn and the F-terms are numerical fluxes calculated at grid cell interfaces. The numerical fluxes are Godu-
nov fluxes calculated by solving generalized Riemann problems as described below. Second-order correction
terms are included and limiters may be used to avoid non-physical oscillations near steep gradients in the solu-
tion profile. Using the f-wave approach, we can write the finite volume method in the form
Wnþ1
i ¼ Wn

i �
Dt
D/

Z2
i�1

2
þZ1

iþ1
2

	 

� Dt

D/
~F iþ1

2
� ~F i�1

2

	 

; ð25Þ
where Z1;2 are first-order fluctuations and the ~F terms are high-resolution correction terms.
We use a cell centered discretization of the spatially varying advection speed a(/). Alternatively one could

use an edge centered discretization of the advection speed, see [16]. For our discretization the generalized Rie-

mann problem at the cell interface /i�1
2

consists of the equation
otwþ o/ ai�1
2
ð/Þw

	 

¼ 0 with ai�1

2
ð/Þ :¼

ai�1 :¼ að/i�1Þ : / < /i�1
2
;

ai :¼ að/iÞ : / > /i�1
2

(
ð26Þ
together with the initial values
wðx; tnÞ ¼
Wn

i�1 : / < /i�1
2
;

Wn
i : / > /i�1

2
.

(
ð27Þ
The structure of the solution of the Riemann problem is depicted in Fig. 1. If a(/) does not change sign, then
the conserved quantity w may be discontinuous across the cell interface /i�1

2
, see Fig. 1(a) and (b). Further-

more, there is a discontinuity moving to the right (with speed ai) or to the left (with speed ai�1) depending
on the sign of a(/). Since the flux is continuous across the interface, the middle state W* can be calculated by
W� ¼
ai�1Wi�1=ai : ai�1; ai > 0;

aiWi=ai�1 : ai�1; ai < 0.

�

If ai�1 < 0 and ai > 0 (Fig. 1(c)) then the conserved quantity is moving away from the grid cell interface /i�1
2

on

both sides, leaving a vacuum in between, i.e. W* = 0. If ai�1 > 0 and ai < 0, then a delta shock is forming right
at the interface, see Fig. 1(d). Note that the structure of the Riemann problem (26) and (27) has similarities to
the structure of the Riemann problem for the pressureless gas equations, see [17]. Also there vacuum states and
delta shocks may arise.

The f-waves Z1;2 can now be calculated by performing a decomposition of the flux difference
aiWi � ai�1 Wi�1. Note that the standard wave propagation algorithm (described in [15,16]) would instead
a b

c d

Fig. 1. Structure of the Riemann problem (26) and (27).
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use a decomposition of the difference Wi � Wi�1 of the conserved quantity. The advantage of the f-wave
method for conservation laws with spatially varying flux function lies in the fact that the flux is contin-
uous across the cell interface although the conserved quantity may have a jump there. If a(/) does not change
sign (see [2]) then the entire flux difference can be carried by just one f-wave, i.e.
Zi�1
2
¼ aiWi � ai�1Wi�1
with no flux difference remaining at the cell interface. This means in particular that we do not have to calculate
the quantity W*. Although this is trivial in the simple case considered here, it carries over to more difficult
Riemann problems.

In order to extend the f-wave approach to the situation where the spatially varying advection speed may
change sign, we decompose the flux difference at each cell interface into two f-waves, i.e.
aiWi � ai�1Wi�1 ¼ Z1
i�1

2
þZ2

i�1
2
. ð28Þ
The first f-wave Z1
i�1

2
is used to update the conserved quantity in the grid cell to the left side of the cell interface

while the second f-wave Z2
i�1

2
is used to update the conserved quantity in the grid cell at the right-hand side.

We now obtain the algorithm:
If ai�1ai > 0, set ai�1

2
:¼ ðai�1 þ aiÞ=2:
if ai�1
2
< 0 : Z1

i�1
2

:¼ aiWi � ai�1Wi�1; s1
i�1

2
:¼ ai�1

2
;

Z2
i�1

2
:¼ 0; s2

i�1
2

:¼ 0;

if ai�1
2
> 0 : Z1

i�1
2

:¼ 0; s1
i�1

2
:¼ 0;

Z2
i�1

2
:¼ aiWi � ai�1Wi�1; s2

i�1
2

:¼ ai�1
2
.

If ai�1 < 0 < ai, i.e. vacuum:
Z1
i�1

2
:¼ �ai�1Wi�1; s1

i�1
2

:¼ ai�1=2;

Z2
i�1

2
:¼ aiWi; s2

i�1
2

:¼ ai=2.
If ai�1 > 0 and ai < 0, i.e. delta shock:
Z1
i�1

2
:¼ ðaiWi � ai�1Wi�1Þ=2; s1

i�1
2

:¼ 0;

Z2
i�1

2
:¼ ðaiWi � ai�1Wi�1Þ=2; s2

i�1
2

:¼ 0.
The finite volume method using these f-waves can be written in the form (25) with the second-order correction
terms
~F i�1
2
¼ 1

2

X2

p¼1

sgn sp
i�1

2

	 

1� Dt

D/
jsp

i�1
2

j
� �

Zp
i�1

2

. ð29Þ
In the second-order correction terms, we also need wave speeds s1;2

i�1
2

associated to the f-waves Z1;2

i�1
2

. If a(/) does
not change sign, several choices of the wave speed si�1

2
lead to a second-order accurate f-wave method, assum-

ing that the functions a and w are sufficiently smooth, see [2]. In this case, si�1
2

is an eigenvalue of an approx-
imative Jacobian matrix of the flux a(/)q(t,/) at the interface /i�1

2
. In order to construct a second-order

accurate f-wave method, we need to approximate the Jacobian matrix with order OðD/Þ. Furthermore, the
approximation of the Jacobian matrix must be consistent at all grid cell interfaces. Here, we have approxi-
mated the Jacobian matrix by Ai�1

2
¼ ðai�1 þ aiÞ=2, i.e. both for a(/) > 0 and a(/) < 0 the approximation of

the Jacobian matrix is equivalent. Second-order accuracy can be shown by Taylor series expansion.
On the sphere we approximate a transport equation of the form (19) with capacity function and spatially

varying flux functions. The finite volume method has the general form
Wnþ1
i;j ¼ Wn

i;j �
Dt

ji;jD/
F iþ1

2;j
� F i�1

2;j

	 

� Dt

ji;jDh
Gi;jþ1

2
� Gi;j�1

2

	 

; ð30Þ
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where Wn
i;j is an approximation to the cell average of the quantity w in grid cell (i, j) at time tn, and ji,j is the cell

centered value of the capacity function. Furthermore, F iþ1
2;j

and Gi;jþ1
2

are numerical fluxes calculated at the
grid cell interfaces ð/iþ1

2
; hjÞ and ð/i; hjþ1

2
Þ, respectively. Periodic boundary conditions are used at the bound-

aries of the computational grid in the /-direction.
The numerical method is a variant of the high-resolution wave propagation algorithm of LeVeque [15,16].

This is a truly multi-dimensional method in the sense that it does not use dimension splitting. The numerical
fluxes are Godunov fluxes that result from solving one-dimensional Riemann problems both in the /-direction
as well as in the h-direction using the f-wave approach described above. Second-order correction terms are
included in analogy to the one-dimensional case. In addition the algorithm also calculates a transverse wave
propagation as part of the second-order correction terms.

The stability condition is the usual CFL condition which in the presence of the capacity function reads
Dt max
i;j

jai;jj
ji;jD/

;
jbi;jj

ji;jDh

� �
6 1. ð31Þ
Near the north and the south pole the capacity function j(/,h) = sinh becomes very small, leading to the
so-called pole singularity. Note however that in our application this does not cause a stability problem at least
as long as we restrict our considerations to a two-dimensional macroscopic velocity field. In this case, all non-
zero terms arising in formula (18) contain sinh and therefore the division by j in the finite volume method
does not lead to a strong restriction of the time step.

Nevertheless, the use of a Cartesian computational grid requires a small modification of the finite volume
method at the north and the south pole, where the grid cells on the sphere degenerate to triangles. Here, we
model the grid cells at the poles (i.e. the grid cells in the first and the last row of the computational mesh) as
two single grid cells.

Recently, Rossmanith [28] developed a wave propagation method for hyperbolic problems on the sphere
using a cubed sphere grid, which covers the sphere with six identical grid patches. With such a grid the pole
singularity is avoided. Numerical boundary conditions have to be implemented in order to model wave prop-
agation between different grids. The diffusion terms arising in our application would further complicate the
method, this has not been implemented so far. Another alternative would be to use an unstructured grid
on the sphere based on triangles for example.

3.4. Finite difference methods for the heat equation on the sphere

For the approximation of the heat equation on the sphere otW ¼ Drr2
~nW a finite difference method is used.

We make use of routines from Fishpack [1] which provide a solver for the Helmholz equation on the sphere, i.e.
for kWþr2

~nW ¼ F (with given F and k < 0). The grid points used by a staggered finite difference grid on the
sphere in computational space agree with the cell average values used by the finite volume method described
in the previous section. In order to obtain a solver for the heat equation, we need to incorporate an implicit
ODE solver. In the context of operator-splitting methods, it is essential to use a multistage one-step method,
since the use of W from previous time steps would not be suitable. Here, we used the TR-BDF2 method (intro-
duced in [3]) which is second-order accurate and L-stable. One time step (from tn to tn+1) takes the form
W�i;j ¼ Wn
i;j þ

Dt
4
r2
~nW

n
i;j þr2

~nW
�
i;j

	 

;

Wnþ1
i;j ¼

1

3
4W�i;j �Wn

i;j þ Dtr2
~nW

nþ1
i;j

	 

.

ð32Þ
The Laplace operator is discretized by the standard 5-point stencil.

3.5. Numerical results for the Smoluchowski equation in the dilute regime

In this section, we will illustrate the performance of our numerical method for the Smoluchowski equation
in the dilute regime for elongational flow. In this case, we can compare our numerical solution with the exact
solution.
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Example 3.1. We calculate steady-state solutions of the Smoluchowski equation in the dilute regime, i.e.
Eq. (15) with (16)–(18). The initial values on the sphere are set to w(0,/,h) = 1/4p. The externally imposed
velocity gradient has the form
Fig. 2.
Dr = 1

Table
Accura

M/N

40/20
80/40
160/80
320/16
640/32
r~x~uext ¼ ‘
2 0 0

0 �1 0

0 0 �1

0
B@

1
CA
with ‘ = ±1. For ‘ > 0, we obtain uniaxial extensional motion, i.e. a full alignment of the director in one direc-
tion. For ‘ < 0 we observe biaxial extensional motion, i.e. the axes align strongly in a plane, but within that
plane show no further tendency to align. The rotational diffusion constant is set to Dr = 1/10. Note that the
Deborah number in this test case is De = 20.

Fig. 2 shows plots of the numerical solution and Table 1 shows the error both in the L1-norm and the
L1-norm for the case of uniaxial extensional motion calculated using the formulas
kerrorkL1
¼
XM

i¼1

XN

j¼1

jWexact
i;j �Wijj sin hjD/Dh; ð33Þ

kerrork1 ¼ max
i;j
jWexact

i;j �Wi;jj; ð34Þ
where Wi,j is a numerical solution that has converged to the steady state and Wexact
i;j is the exact steady-state

solution in grid cell (i, j). We also show the experimental order of convergence (EOC) obtained by comparing
the error on two different grids.

The exact steady-state solution for uniaxial extensional motion has the form
wexactð/; hÞ ¼ C exp � 3

2Dr

ð1� cos2ð/Þ sin2ðhÞÞ
� �

;

where C is a constant that can be obtained by the condition (1). For Dr = 1/10 we obtain C = 2.30122.
Numerical solution of the Smoluchowski equation for (a) uniaxial (i.e. ‘ = 1) and (b) biaxial (i.e. ‘ = �1) extensional motion with
/10.

1
cy study for uniaxial extensional motion

L1-error EOC L1-error EOC

0.06001424 0.10916803
0.01497276 2.03 0.04779091 1.19
0.00365058 2.03 0.01558344 1.62

0 0.00090492 2.01 0.00439733 1.82
0 0.00022760 1.99 0.00119370 1.88
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The solution of the Smoluchowski equation in the dilute regime with externally given velocity field cor-
responding to shear flow will be described in Section 4, where we consider the coupled micro–macro
problem.

Note that our numerical method for the microscopic solution structure can also be used in the semi-dilute
case if the diffusion is modeled by Eq. (7). The only difference compared to the dilute regime is that the
diffusion constant has to be updated during each time step of the numerical method.
3.6. The solution of the Smoluchowski equation in the concentrated regime

In the concentrated regime, the microscopic solution structure of rod orientation shows a complex
behavior which depends on the shear velocity and the parameter U. This was studied by Fafaoni et al.
[5] for an externally given shear flow using tools of bifurcation analysis. See also earlier work by Larson
and Öttinger [11]. For small values of U, a unique steady-state microscopic solution exists. For U large
enough different microscopic solution structures can be observed depending on the strength of the shear
velocity. At high shear rates the orientational distribution function converges to a steady state, the
so-called flow-aligning regime. At low or intermediate shear rates three different kinds of time periodic
solutions have been found: The tumbling regime is observed at low shear rates when the initial orientation
of the director lies in the shear plane. This regime is characterized by a rotation of the director within the
shear plane. (The angular velocity is highly non-uniform: the director flips from a flow-aligned position to
the next.) The wagging regime, i.e. a partial rotation of the director in the shear plane, is observed at
intermediate shear rates. For out-of-plane initial conditions the director may reach a kayaking orbit,
i.e. the director rotates out of the shear plane but not orthogonal. Furthermore, for out-of-plane initial
conditions and low shear rates the stationary log rolling regime, with the director oriented along the
vorticity axis, can be observed. It is unlikely that such a rich microscopic behavior can be modeled by
a single macroscopic model.

In the concentrated regime, we can use a numerical method very similar to those described above. The
only difference is that the formulas for the spatially varying velocity field, i.e. a and b in Eq. (15), have to be
extended and now also depend on w(t,/,h). This means that the velocity field has to be updated during each
time step. We rewrite the Smoluchowski equation for the concentrated regime (8) into the form
jð/; hÞotwþ o/ð~aðt;/; hÞwÞ þ ohð~bðt;/; hÞwÞ ¼ gðwÞ ð35Þ
with j and g as in (16) and (17), respectively. Note that
r~n � ðwr~nV evÞ ¼
1

sin h
1

sin h
o/ðwðt;/; hÞo/V evÞ þ ohðsin hwðt;/; hÞo/V evÞ

� �
. ð36Þ
We can thus write Eq. (8) in the form (35) using a velocity field of the form
~aðt;/; hÞ :¼ að/; hÞ � Dr

1

sin h
wðt;/; hÞo/V evðt;/; hÞ;

~bðt;/; hÞ :¼ bð/; hÞ � Dr sin hwðt;/; hÞohV evðt;/; hÞ.
ð37Þ
Here
V evðt;/; hÞ :¼ U
Z p

0

Z 2p

0

wðt;/0; h0Þ sin h0ð1� ðsin h sin h0 cosð/� /0Þ þ cos h cos h0Þ2Þd/0 dh0 ð38Þ
and a(/,h), b(/,h) are given in Eq. (18). In order to calculate the numerical solution at time tn+1, we use a
spatially varying velocity field ~a; ~b where the term modeling the excluded volume effect is evaluated using W
from the previously calculated time steps. To obtain (at time tn+1) a second-order accurate approximation
of a transport equation with time-dependent spatially varying velocity field using the method described in Sec-
tion 3, we need discrete values of the velocity field at the intermediate time tnþ1

2, i.e. we need to use ~aðtnþ1
2;/; hÞ,

~bðtnþ1
2;/; hÞ. Here those values were calculated by extrapolation using the numerical solution Wn and Wn�1

from previous time steps:



Fig. 3
M = 1
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~aðtnþ1
2;/; hÞ :¼ 1þ tnþ1 � tn

2ðtn � tn�1Þ

� �
~aðtn;/; hÞ � tnþ1 � tn

2ðtn � tn�1Þ ~aðt
n�1;/; hÞ;

~bðtnþ1
2;/; hÞ :¼ 1þ tnþ1 � tn

2ðtn � tn�1Þ

� �
~bðtn;/; hÞ � tnþ1 � tn

2ðtn � tn�1Þ
~bðtn�1;/; hÞ.

ð39Þ
Our numerical method is able to reproduce all the solution structures mentioned above. Here, we only show
numerical results for the wagging regime.

Example 3.2. We approximate the Smoluchowski equation in the concentrated regime, i.e. Eq. (35) with (16),
(17) and (37). The externally imposed velocity gradient has the form
r~x~uext ¼
0 1 0

0 0 0

0 0 0

0
B@

1
CA.
Furthermore we use Dr = 1/10 and U = 10. The initial values are set to w(0,/,h) = 1/4p, i.e. uniform distri-
bution of director orientations.

Numerical results at different times are shown in Fig. 3. Results of a numerical accuracy study are shown in
Table 2. Since we do not know the exact solution for this test case, we have compared our numerical solution
on different grids with a highly resolved numerical solution that was calculated on a grid with 1800 · 900 grid
cells. Results of the convergence test, which confirm second-order convergence rates, are shown for time t = 4
and t = 14 (corresponding to the first and the fifth plot in Fig. 3).

A coupled micro–macro problem for shear flow in the concentrated regime will be considered in Section 5.
. Numerical approximation of the Smoluchowski equation in the concentrated regime showing time periodic wagging. grid:
60, N = 80.



Table 2
Accuracy study for Smoluchowski equation in the concentrated regime

M/N t = 4 t = 14

L1-error EOC L1-error EOC

40/20 0.03397236 0.03503204
120/60 0.00361421 2.04 0.00275919 2.31
360/180 0.00037575 2.06 0.00027765 2.09

64 C. Helzel, F. Otto / Journal of Computational Physics 216 (2006) 52–75
4. The shear flow problem and the spurt phenomenon in the dilute regime

Let ~u ¼ ðuðx; y; zÞ; vðx; y; zÞ;wðx; y; zÞÞt, ~x ¼ ðx; y; zÞt, ~F ext ¼ ðF x
ext; F

y
ext; F

z
extÞ

t and r = (ri,j)i,j=1,. . .,3. We now
consider the simplest possible coupled flow problem for suspensions of rod-like molecules, i.e. shear flow with
macroscopic velocity that takes the form ~u ¼ ðuðyÞ; 0; 0ÞT. In this case, the micro–macro flow problem with
no-slip boundary condition written in (/,h)-coordinates reads:

Microscopic Smoluchowski-equation:
otðsin hwÞ þ ohðuy sin / cos / sin2 h cos hwÞ þ o/ð�uy sin h sin2 /wÞ

¼ Dr ohðsin hwhÞ þ o/
1

sin h
w/

� �� �
. ð40Þ
Macroscopic flow equation with boundary condition:
oyyuþ oyr2;1 ¼ �F x
ext on the interval � 1

2
;
1

2

� �
;

uð�1=2Þ ¼ uð1=2Þ ¼ 0.

ð41Þ
Elastic stress:
r2;1 ¼ 3

Z p

0

Z 2p

0

w sin3 h cos / sin /d/dh. ð42Þ
Given a constant externally imposed velocity gradient rx~uext the Smoluchowski equation (40) has a unique
stationary solution wð~nÞ. Via (42), this defines a mapping from deformation rate to elastic stress
rx~uext 7! r;

r~n � ðP~n?r~x~uext~nwð~nÞÞ ¼ Drr2
~nwð~nÞ.

ð43Þ
After appropriate rescaling with Dr this mapping is universal. A key observation is that this map is non-mono-
tone. Fig. 4(a) shows a numerical calculation of the non-monotone curve of the shear velocity versus the {1–
2}-component of the elastic stress for Dr = 1. As a consequence, the mapping
rx~uext 7!
1

2
ðrx~uext þrt

x~uextÞ þ r;

r~n � ðP~n?r~x~uext~nwð~nÞÞ ¼ Drr2
~nwð~nÞ;

ð44Þ
which relates the deformation rate to the total stress is non-monotone for sufficiently small Dr. Fig. 4(b)
shows a plot of (44) using Dr = 1/1000. A consequence of this non-monotonicity is that there exist steady-
state macroscopic solutions of the coupled problem with discontinuous shear velocity, see [24] for an ana-
lytical proof.

There are models with macroscopic constitutive equation, e.g. the JSO-model, that show in the highly
elastic regime the same non-monotone behavior for shear velocity vs. total stress. We found that in the
dilute regime the steady-state solution structure for shear flow, obtained by the micro–macro model,
agrees with the steady-state solution structure predicted by the JSO-model. Before we present the
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Fig. 4. (a) Non-monotonicity in shear velocity vs. elastic stress for Dr = 1. (b) The mapping shear velocity vs. total stress is non-monotone
assuming Dr is small enough (Dr = 1/1000).
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calculations for the micro–macro model we will summarize some known results for the JSO-model, see
[18–20] for details.

4.1. Steady-state solutions of the shear flow problem for the JSO-model

In the shear flow situation considered in this section, steady-state solutions of the JSO-model satisfy the
equations
Fig. 5.
Top-ju
r ¼ uy

1þ u2
y

;

rþ euy ¼ �yF ext; y 2 ½�1=2; 0�;
where u is the velocity, r is the elastic stress component, T :¼ r + euy is the total stress and Fext is an external
forcing that is assumed to be constant.

The mapping from shear velocity to total stress uy ´ euy + r is non-monotone for e < 1/8, see Fig. 5(a). It
has been proposed by Malkus et al. [18–20] that this non-monotonicity may explain the spurt phenomenon.
For a given total stress, there are two possible values for the shear rate once a critical value is reached (the
decreasing part of the curve can be ignored for stability reasons). The sudden increase of the flow rate
observed in the spurt regime was explained by the two shear rates coexisting in a flow, with the higher shear
rate close to the wall. Malkus et al. analyze the velocity profile for one-dimensional shear flow through a slit
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die in the spurt regime. They determine steady-state solutions for several different situations by analyzing sys-
tems of ordinary differential equations.

One experiment is the case of quasi static loading in which the volume forcing term Fext is increased in small
steps such that the steady state is reached at each step. Under loading a smooth (i.e., classical) velocity profile
is observed as long as |ywall|Fext 6 Ttop. (See Fig. 5(a) for the notation Ttop and Tbottom. Furthermore ywall

denotes the position of the boundary, i.e. in our example |ywall| = 1/2.) Past the point Ttop the velocity profile
develops a kink near the wall, as the fluid near the wall jumps to the higher shear rate, and the bulk of the fluid
remains at lower shear rate. This jump in the shear rate at Ttop is called top-jumping. As the volume forcing is
increased further, the kink moves away from the boundary. The location of the kink for a top-jumping solu-
tion is ytop = �Ttop/Fext. Fig. 5(b) shows such a top-jumping velocity profile of the JSO-model with Fext = 1.5
and e = 1/20. The plot shows u(y) vs. y.

Another experiment is unloading. Here we start with a top-jumping solution and decrease the forcing such
that T bottom < jywalljF x

ext < T top. For this experiment, a bottom-jumping macroscopic solution is observed, i.e.
the jump in the velocity gradient is observed at the position ybottom = �Tbottom/Fext.

Our numerical calculations (shown in Section 4.2) suggest that the same behavior for the macroscopic
velocity profile can be obtained for our multiscale model in the dilute regime. In the concentrated regime,
we observe the formation of a microstructure in the macroscopic velocity profile (see Section 5). This cannot
be obtained by the macroscopic JSO-model.

4.2. Numerical results for the coupled micro–macro model

We now perform numerical simulations for the coupled multiscale system (40)–(42) using Dr = 1/1000. In
the first experiment, the forcing is increased up to a value F x

ext 6 0:68 which is slightly below the value
2 Æ Ttop 	 0.70 but larger than 2 Æ Tbottom 	 0.63. The macroscopic velocity profile is shown in Fig. 6(a) where
we plot u(y) vs. y. In agreement with the above-mentioned analytical results for the JSO-model, we observe a
classical solution. If we increase the forcing to the value F x

ext ¼ 0:8, the steady-state velocity profile changes
dramatically and we observe a top-jumping macroscopic solution, see Fig. 6(b). In our third experiment,
we start with a top-jumping macroscopic solution obtained with F x

ext ¼ 3. We decrease the forcing up to
F x

ext ¼ 0:8, i.e. the same value as used in the previous experiment. For this unloading experiment, we observe
a bottom-jumping steady-state solution, see Fig. 6(c).

In Fig. 7, we show the microscopic solution structure as it arises at a single point in the smooth flow region
(see Fig. 7(a)) and inside the boundary layer (Fig. 7(c)). In the small Deborah number regime, the rod orien-
tation is nearly uniformly distributed in the plane spanned by flow direction and shear direction with a light
preference of rods oriented in a 45� angle to the flow direction. In the large Deborah number regime, i.e. inside
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Fig. 6. Macroscopic velocity profiles observed for loading and unloading experiment: (a) classical solution ðF x
ext ¼ 0:68Þ, (b) top-jumping
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Fig. 7. Microscopic solution for probability distribution of rod orientations; (a,c) contour plots of W for small and large Deborah number,
respectively. (b,d) graph of W in the plane of flow direction and shear direction for small and large Deborah number.
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the boundary layer of a spurt solution, the rod orientation is nearly aligned with the flow direction. Figs. 7(b)
and (d) show the graph of W in the flow direction–shear direction plane. In (a) and (c), we show level sets of W
plotted on the sphere and viewed from the positive vorticity axis. In (b) and (d), we plot a graph of W in the
plane spanned by the flow and the shear direction.
5. Simulations of the coupled flow problem in the concentrated regime

We now consider coupled flow problems in the concentrated regime. As in the previous section, we
assume that the macroscopic velocity field has the form ~u ¼ ðuðyÞ; 0; 0ÞT. In the concentrated regime excluded
volume effects need to be included in the calculation of the microscopic equation for rod orientation (com-
pare with Eq. (8)) and in the calculation of the macroscopic elastic stress (compare with Eq. (10)). Here,
we describe different numerical experiments with macroscopic solutions that show the spurt phenomenon.

Depending on the strength of the parameter U in the Maier–Saupe potential, the macroscopic solutions in
the concentrated regime show a more complex structure than in the dilute regime. For small values of U, the
Smoluchowski equation (8) has for all shear rates a unique stationary solution. These solutions have the direc-
tor always in the shear plane. (Note that this was also observed in [5].) For the steady-state solution, we can
consider the mapping from deformation rate to elastic stress. As in the dilute regime, this mapping is non-
monotone. Fig. 8 shows a numerical simulation of shear velocity vs. elastic stress for Dr = 1 and U = 0 (i.e.
the dilute regime) as well as for U = 1, U = 2 and U = 3. We thus expect spurt macroscopic solutions for
Dr small enough and a volume forcing term F x

ext large enough.

Example 5.1. The coupled micro–macro shear flow problem in the concentrated regime is solved for
y 2 ½� 1

2 ;
1
2� with boundary conditions u(�1/2) = u(1/2) = 0. The rotational diffusion is set to Dr = 1/1000 and

the volume forcing term is F x
ext ¼ 1. The parameter U in the Maier–Saupe potential varies in our experiments
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and is set to U = 1 and U = 20. The microscopic initial values for rod orientation are set to be the uniform
distribution.

In the case U = 1, the microscopic problem for rod orientation has for any shear rate a unique steady state.
In analogy to the dilute case we can consider the curve of shear velocity vs. total stress which is non-monotone
for Dr small enough, see Fig. 9(a). A numerical calculation of the macroscopic velocity is shown in Fig. 9(b).
Note that we observe a top-jumping macroscopic solution.

For larger values of U, the Smoluchowski equation in the concentrated regime no longer has a unique
stationary solution. Instead, at least for smaller shear velocities, time periodic tumbling and wagging solutions
may be observed. Therefore, we expect that the macroscopic solution structure also depends on time. If the
shear velocity is large enough the microscopic solution is a steady state flow aligned solution. Such micro-
scopic solutions can be observed inside the boundary layer of the spurt solution in Fig. 10. For lower shear
rates, which arise in the bulk of the macroscopic flow, the microscopic solution is a time periodic tumbling
or wagging solution characterized by a full or partial rotation of the director in the plane spanned by flow
direction and shear direction. The frequency of the rotational motion depends on the local shear rate. In
our case of a Poiseuille-type velocity profile, the shear rate and thus the tumbling and the wagging frequency
varies in the y-direction. This generates a spatial twist in the director orientation which increases over time.
This is reflected in the increasing number of oscillations observed in the macroscopic velocity outside the
boundary layer, see Fig. 10. An increase of the number of oscillations with time can also be observed in
the plots of elastic stress vs. y, which are also shown in Fig. 10. In Fig. 11, we indicate the average orientation
of the rods as it can be observed at different locations of the macroscopic flow domain at different times.
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Fig. 9. (a) Shear velocity vs. total stress in the concentrated regime with Dr = 1/1000 and U = 1; (b) macroscopic velocity profile for
Example 5.1 with U = 1.
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Fig. 10. Macroscopic velocity profile and elastic stress vs. y for Example 5.1 with U = 20 at different times (increasing from left to right).
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Fig. 11. Average orientation of rods over y (the half macroscopic domain) at different times corresponding to the plots of Fig. 10 (time is
increasing from the top to the bottom). Horizontal rods are aligned with the flow direction, vertical rods with the shear direction. The light
shaded part indicates the microscopic orientation inside the boundary layer and the dark shaded part indicates the microscopic orientation
inside the bulk of the flow domain. The microscopic orientation is shown at every 4th grid point used to approximate the macroscopic
solution structure.
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6. Suspensions of rod-like molecules in a two-dimensional macroscopic flow

In this section, we generalize our numerical method to coupled flow problems in the dilute regime with gen-
eral two-dimensional macroscopic velocity field of the form~u ¼ ðuðx; yÞ; vðx; yÞÞ. Now the term~u � r~xW of the
Smoluchowski equation (2) which describes advection of the centers of mass by the macroscopic velocity does
not drop out. The discretization of this term will be described in this section. The two-dimensional macro-
scopic flow equations were solved using the artificial compressibility method described in [25] on a finite
difference grid as depicted in Fig. 12(b).



a b

Fig. 12. (a) Specification of macroscopic velocities on finite volume grid for the discretization of Eq. (46). (b) Finite difference grid used for
the discretization of the Stokes equation.
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Assuming that an externally imposed macroscopic velocity field is given (which is the case during each time
step of our method), we discretize the Smoluchowski equation (2) by solving the two subproblems
otwþr~n � P~n?r~x~u~nwð Þ ¼ Drr2
~nw; ð45Þ

otwþ~u � r~xw ¼ 0. ð46Þ
Our discretization of Eq. (45) has been explained in Section 3. Note that for a two-dimensional macroscopic
flow problem subproblem (45) has to be solved for each grid cell of the two-dimensional macroscopic flow
domain during each time step. Here it remains to describe the discretization of subproblem (46). We will
use a high-resolution method for which the condition (1) remains satisfied at all times and at all discretization
points in physical space, assuming that it is satisfied initially. Our numerical method is a variant of the high-
resolution wave propagation algorithm, see [14,16]. Assume that the velocity at the intermediate time tnþ1

2 is
specified at the midpoints of the cell interfaces of a finite volume grid, as shown in Fig. 12(a). In each grid
cell, we require that the discrete divergence free condition
uiþ1
2;j
� ui�1

2;j

Dx
þ

vi;jþ1
2
� vi;j�1

2

Dy
¼ 0 ð47Þ
is satisfied. Let Wij denote the discrete description of the microscopic quantity w at the position (xi,yj) in phys-
ical space.

One time step of the finite volume method for Eq. (46) takes the form
W
k;l
i;j ¼ Wk;l

i;j �
Dt
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A�DWk;l
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8i; j; k; l; ð48Þ
where A
DW are first-order fluctuations and ~F , ~G are high-resolution corrections. The first line in Eq. (48)
represents the first-order update while the second line describes the second-order correction terms. The
first-order fluctuations and second-order corrections in normal direction have the form
A
DWk;l
i�1

2;j
:¼ u
i�1

2;j
ðWk;l

i;j �Wk;l
i�1;jÞ; ð49Þ
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where k is a total variation diminishing limiter, which may be applied in order to remove any non-physical
oscillations introduced by the higher-order method. Furthermore u+ :¼ max(u, 0) and u� :¼ min(u, 0). In order
to improve the accuracy and stability restrictions of this update, a transverse wave propagation, which elim-
inates the need of operator splitting must also be incorporated into the ~F and ~G terms, see [14–16]. The trans-
verse propagation of the wave Wk;l

i;j �Wk;l
i�1;j updates the ~G fluxes in the form:
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In addition, the differences Wk;l
i;j �Wk;l

i;j�1 change the ~F fluxes in an analogous way.
It is easy to show that the first-order update of the wave propagation algorithm for the advective equation

(46), under the assumption (47) is conservative. Since the second-order correction terms are formulated in flux
difference form, formula (48) leads to a conservative update, i.e. our method is equivalent to a numerical
method for the conservative equation
otwþr~x � ð~uwÞ ¼ 0. ð54Þ
For our application we require that a discrete version of (1) is satisfied, i.e.
X
k;l

W
k;l
i;j sinðhlÞ ¼ 1 8i; j ð55Þ
assuming that this relation is true for the microscopic solutions at the previous time step. For the method (48)
with the fluctuations and correction terms as defined in (49)–(53), this relation can be verified easily. This is
because all terms except the first term on the right-hand side of (48) contain differences of neighboring discrete
values of W. Note however that in order to satisfy (55) the wave limiters used in 51,52 should not depend on
k, l.

A standard TVD wave limiter for this problem (compare with [16]) would depend on k and l in the form
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ð56Þ
The minmod limiter, for instance, has the form
KðdÞ :¼ max 0;min 1; dð Þð Þ. ð57Þ

In our application the condition (55) is satisfied only if the limiter used in (51) and (52) does not depend on k, l.
This can be achieved by setting
ki�1
2;j

:¼ min
k;l

kk;l
i�1

2;j
; ki;j�1

2
:¼ min kk;l

i;j�1
2

; ð58Þ
i.e. we use a more restrictive limiter than needed to avoid nonphysical oscillations.
Since the high-resolution method (46) is explicit, a CFL condition must be imposed to ensure stability. The

method requires
max
i;j

Dt jui�1
2;j
j; Dt jvi;j�1

2
j

� �
6 1. ð59Þ
Dx Dy
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6.1. Flow through a contracting channel

Here, we illustrate the performance of our numerical multiscale method in the dilute regime for a two-
dimensional flow situation that has served as a widely used test case for numerical methods of macroscopic
models (e.g. the Oldroyed B model), see for instance [26,30].

We approximate (2)–(5) in a channel with varying cross section, with a contraction ratio of 4:1. The channel
is 16 units long and on the wider part 8 units high. At the inlet we impose parabolic Poiseuille flow
Fig. 13
solutio
uðyÞ ¼ 3

128
ð16� y2Þ; vðyÞ ¼ 0; �4 6 y 6 4.
Outflow boundary conditions are used at the right boundary. At all other boundaries no-slip boundary con-
ditions ~u ¼ 0 are imposed.

In Fig. 13, we show streamlines of the macroscopic steady-state solution. On the left-hand side we show the
streamlines in the full geometry while on the right-hand side we show a close-up view of the vortex. The size of
the vortex depends on Dr. This is in agreement to simulations for purely macroscopic models where a depen-
dence of the size of the vortex on the Weissenberg number was observed.

6.2. Stability of spurt solutions

An interesting question that has so far not been explored for our coupled micro–macro system is the sta-
bility of one-dimensional spurt solutions in two space dimensions. In our last numerical test case, we want to
illustrate that our numerical method may be able to reflect interesting stability behavior. Here we again
. Streamlines of the macroscopic flow through a contracting channel; (a,b) solution of Stokes equation without elastic effects, (c,d)
n of the micro–macro model for Dr = 1/50, (e,f) Dr = 1/100.
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consider the dilute case. This stability test is motivated by work of Renardy [27], where the stability of a one-
dimensionally stable spurt solution in two dimensions is investigated by linear stability analysis. There a John-
son–Segalman liquid was considered and it was found that the one-dimensionally stable spurt solutions are
two-dimensionally unstable.

A two-dimensional spurt Couette flow is driven by the motion of the upper wall, which is here set to
utop = 0.018, vtop = 0, ubottom = vbottom = 0. The macroscopic physical domain is the rectangle [0,2] · [0,1].
Periodic boundary conditions are used in the x-direction. In both the lower and the upper layer, we start
our calculation with a steady-state microscopic solution w corresponding to a given velocity gradient of the

form r~x~uext ¼ 0 ðuyÞ1;2
0 0

� �
and the diffusion constant Dr = 1/1000. In the lower layer we use (uy)1 = 0.005

while in the upper layer (uy)2 = 0.069 is used. We add a perturbation to the position of the interface, i.e.
the interface is initially located at y = 0.8 + 0.01sin(10px), x 2 [0,2].
Fig. 14. Numerical investigation of the stability behavior of a one-dimensional spurt solution in two space dimensions.



Fig. 14 (continued)
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Fig. 14(a) shows the macroscopic velocity in the x and the y-direction at the initial time. The initial pertur-
bation of the interface decreases, suggesting that the solution is stable to short-wave perturbations, see
Fig. 14(b). The numerical results shown in Fig. 14(c)–(e) indicate that the solution is unstable for long or order
one wave perturbations.
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